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Abstract

Suppose we are given a set of n balls {b1, . . . , bn} each colored either red or blue
in some way unknown to us. To find out some information about the colors, we
can query any triple of balls {bi1 , bi2 , bi3}. As an answer to such a query we obtain
(the index of) a majority ball, that is, a ball whose color is the same as the color of
another ball from the triple. Our goal is to find a non-minority ball, that is, a ball
whose color occurs at least n

2 times among the n balls. We show that the minimum
number of queries needed to solve this problem is Θ(n) in the adaptive case and
Θ(n3) in the non-adaptive case.
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1 Introduction

This paper deals with search problems where the input is a set of n balls, each
colored in some way unknown to us and we have to find a ball possesing a
certain property (or show that such a ball does not exist) by asking certain
queries. Our goal is to determine the minimum number of queries needed
in the worst case. It is possible that the queries are all fixed beforehand (in
which case we speak of non-adaptive search) or each query might depend on
the answers to the earlier queries (in which case we speak of adaptive search).

We say that a ball b is a majority ball of a set A if there are more than |A|
2

balls
in the set that have the same color as b. Similarly, a ball b is a non-minority
ball of a set A if there are at least |A|

2
balls in the set that have the same

color as b. Note that these two notions are different if and only if n is even
and |A|

2
balls are colored of the same color, in which case each of these balls

is a non-minority ball and there are no majority balls (moreover, if there are

only two colors, then the size of the other color class is also |A|
2
, thus every

ball is a non-minority ball). For more than two colors it is possible that even
non-minority balls do not exist. A ball b is said to be a plurality ball of a set
A if the number of balls in the set with the same color as b is greater than the
number of balls with any of the other colors. In this paper we focus on the
case of just two colors.

The most natural non-trivial question is the so-called majority problem
which has attracted the attention of many researchers. In this problem our
goal is to find a majority ball (or show that none exists), such that the possible
queries are pairs of balls {b1, b2} and the answer tells us whether b1 and b2
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have the same color or not. In the adaptive model, Fisher and Salzberg [6]
proved that �3n/2� − 2 queries are necessary and sufficient for any number
of colors, while Saks and Werman [11] showed that if the number of colors
is known to be two, then the minimum number of queries is n − b(n), where
b(n) is the number of 1’s in the binary representation of n (simplified proofs
of the latter result were later found, see [2,9,12]). In the non-adaptive model
with two colors, it is easy to see that the minimum number of queries needed
is n− 1 if n is even and n− 2 if n is odd.

There are several variants of the majority problem [1]. The plurality prob-
lem, where we have to find a plurality ball (or show that none exists) was
considered, among others, in [1,5,7]. Another possible direction is to use sets
of size greater than two as queries [4,3].

2 Models, results

Now we define the main model studied in this paper. In the original compar-
ison model the answer to the query {b1, b2} can be interpreted as the answer
to the question whether there is a majority ball in the subset {b1, b2}. If the
answer is yes, then obviously both b1 and b2 are majority balls. Therefore
we obtain a generalization of the comparison model if for any query that is a
subset of the balls the answer is either (the index of) a majority ball, or that
there is no majority ball in the given subset (which cannot be the case if the
size of the subset is odd and there are only two colors). We study this model
in case of two colors, and mostly when only queries of size three are allowed,
although we also prove some results for greater query sizes.

Unfortunately, even asking all triples cannot guarantee that we can solve
the majority problem for two colors. Suppose we have an even number of balls
that are partitioned into two sets of the same size, X and Y , and suppose that
the answer for any triple T is a ball from T ∩X if and only if |T ∩X| ≥ 2. In
this case we cannot decide whether all balls have the same color or all balls in
X are red, but all balls in Y are blue. In the former case all balls are majority
balls, while in the latter there exists no majority ball.

Because of this, our aim will be to show a non-minority ball (which always
exists if there are only two colors). Let us assume the balls are all red or blue
and all queries are of size q. We will denote the minimum number of queries
needed (in the worst case) to determine a non-minority ball by Aq(n) in the
adaptive model and by Nq(n) in the non-adaptive model.

At first sight the model we have just introduced seems to be rather artifi-



cial. Let us, however, state a more natural problem that is equivalent to this
model.

Suppose that our input is a binary sequence of length n, i.e., n numbers
such that each is either 0 or 1. Our task is to find a median element, such
that the queries are odd subsets of the input elements and the answer is one
of the the median elements of the subset. Let us assume queries are of size q.
Denote the the minimum number of queries needed in the worst case to deter-
mine a median element by Amed

q (n) in the adaptive model and by Nmed
q (n) in

the non-adaptive model. If we replace 0 and 1 by red and blue, one can easily
see that the median elements of any set are exactly the non-minority balls of
the set. So we have A2l+1(n) = Amed

2l+1(n) and N2l+1(n) = Nmed
2l+1(n).

We obtain a natural generalization that also works for even sized subsets if
the answer is the tth element for some fixed t. More precisely, for a query Q,
the answer may be a if and only if there exists t−1 elements e ∈ Q\{a}, such
that e ≥ a and |Q|− t elements e ∈ Q\{a}, such that q ≤ a. Note that in this
model there might be more than one valid answers to a given query. This can
be outruled by assuming that all elements are different (in which case we do not
deal with just the numbers 0 and 1, obviously). This approach was proposed by
G. O.H. Katona and studied by Johnson and Mészáros [10]. They have shown
that if all elements are different, then they can be almost completely sorted 12

using O(n log n) queries in the adaptive model and O(nq−t+1) queries in the
non-adaptive model and both results are sharp. However, their algorithms
fail if not all elements are different. Our results imply that the same bound
holds in the adaptive model with no restriction. However, the bound in the
non-adaptive model cannot be extended to the general case and we prove some
related results.

As we have already mentioned, we will mainly consider the case k = 3 with
two colors. To state our results concerning A3(n) and N3(n) we introduce the
following notations. We write [n] = {1, 2, . . . , n} for the set of the first n
positive integers and the set of balls is denoted by B = [n]. For a set S, the
set of its k-subsets will be denoted by

(
S
k

)
. Let Q ⊆ (

B
3

)
be a query set. Then

for any ball b ∈ B let dQ(b) = |{Q | b ∈ Q ∈ Q}| denote the degree of b in Q
and for any two balls bi, bj ∈ B let dQ(bi, bj) = |{Q | {bi, bj} ⊂ Q ∈ Q}| denote
the co-degree of bi and bj in Q. Furthermore, let us write δ(Q) = min{dQ(b) |
b ∈ B} and δ2(Q) = min{dQ(bi, bj) | bi, bj ∈ B}.

12 Note that the t−1 largest and the q−t+1 smallest elements cannot ever be differentiated
with such questions, so we only want to determine these and sort the rest.



Theorem 2.1 A3(n) = O(n).

Theorem 2.2 (i) If n is odd, then 1
2

(
n
3

) ≤ N3(n). Moreover, if Q ⊆ (
B
3

)
is

a set of queries such that δ2(Q) < n−2
2
, i.e., there is a pair of balls x, y with

dQ(x, y) < n−2
2
, then Q cannot determine a non-minority ball.

(ii) There exists a non-adaptive query set Q ⊆ (
B
3

)
with δ2(Q) = �n/2�+1

that determines a non-minority ball.

(iii) If n is even, then 1
8

(
n
3

) ≤ N3(n). Moreover, if Q ⊆ (
B
3

)
is a set of

non-adaptive queries such that there exist four balls x, y, u, v with dQ(x, u) +
dQ(x, v) + dQ(y, u) + dQ(y, v) ≤ n/2 − 3, then Q cannot determine a non-
minority ball.

Parts (i) and (ii) of the previous theorem shows that the minimum value of
δ2(Q) taken over all non-adaptive sets of queries determining a non-minority
ball differs from n/2 by at most 1 provided n is odd. We conjecture that this
holds independently of the parity of n (maybe with a larger constant in the
role of 1).

Theorem 2.3 (i) N3(n) ≤ (5
6
+o(1))

(
n
3

)
. Moreoever, any non-adaptive query

set Q with δ2(Q) > 5n
6

determines a non-minority ball.

(ii) There exists a non-adaptive query set Q with δ2(Q) = 5n
6
− 3 that does

not determine a non-minority ball.

We have some information on the non-minority problem if the query size
q > 3 (but the number of colors is still only two) and also investigate some
related models. Recall that in this model a query is q balls, and the answer
is either (the index of) a majority ball, or that there is no majority color in
this subset (if the size of the subset is odd and there are only two colors, then
this cannot happen), and that we denote the number of queries needed to
determine a non-minority ball by Aq(n) in the adaptive model and by Nq(n)
in the non-adaptive model. As many of the proofs and algorithms are very
similar to the ones we used for the case q = 3, we do not always go into all
the details.

By definition, the model is quite different for odd and even q. We first
consider the case when q is odd, where we could only prove the following
results.

Theorem 2.4 N2l+1(n) = Ω(n3), A2l+1(n) = O(n2).

Now we consider the case q = 2l. We have the following results.

Theorem 2.5 N2l(n) ≤ n(n− 2l), A2l(n) ≤ n− 2l + 1.



The huge difference between the odd and even cases motivates us to con-
sider the model where the answer to a query is simply a non-minority ball.
We define the following more general model. For some 0 < α ≤ 1/2, we say
that a ball b ∈ B is an α-ball of the set B if there are at least α(|B| − 1)
other balls in the set that have the same color as b. Similar density queries
were considered in the group testing model in [8]. Notice that a 1

2
-ball is just

a majority ball. In this new model, the queries are subsets of size q of the set
of n balls colored with two colors and the answer we obtain to a query Q is
an α-ball of Q or that there is no such ball in the set.

Our goal is to find a ball having the same color as many other balls. Let
A be the largest integer, such that 
 q

A
� − 1 ≥ α(q − 1).

Theorem 2.6 For any q, α and n, if A divides n or q, or (n mod A) <
(q mod A), then even asking all the possible

(
n
q

)
queries, it is possible that we

cannot show a 1
A
-ball of the full set.

The following theorem shows that we can find an α-ball for every other
instances of q and α if n is large enough. Moreover, 1

A
cannot be replaced by

any smaller number.

Theorem 2.7 After asking all the possible
(
n
q

)
queries, we can show an almost

1
A
-ball of the full set, a ball such that there are at least n

A
− cq other balls of

the same color, where cq is a constant depending only on q.

References

[1] Aigner, M., Variants of the majority problem, Discrete Applied Mathematics
137 (2004), 3–25.

[2] Alonso, L., Reingold, E. M, and Schott, R., Determining the majority,
Information Processing Letters 47 (1993), 253–255.

[3] De Marco, G., and Kranakis, E., Searching for majority with k-tuple queries,
Discrete Mathematics, Algorithms and Applications, to appear.

[4] De Marco, G., Kranakis, E., and Wiener, G., Computing majority with triple
queries, Theor. Comput. Sci. 461 (2012), 17–26.
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