Minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs

Dennis Clemens

Institut für Mathematik
Technische Universität Hamburg-Harburg
21073 Hamburg, Germany

Yury Person

Institut für Mathematik
Goethe-Universität
60325 Frankfurt am Main, Germany

Abstract

A uniform hypergraph H is called k-Ramsey for a hypergraph F, if no matter how one colors the edges of H with k colors, there is always a monochromatic copy of F. We say that H is minimal k-Ramsey for F, if H is k-Ramsey for F but every proper subhypergraph of H is not. Burr, Erdős and Lovász [S. A. Burr, P. Erdős, and L. Lovász, *On graphs of Ramsey type*, Ars Combinatoria 1 (1976), no. 1, 167–190] studied various parameters of minimal Ramsey graphs. In this paper we initiate the study of minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs. We show that the smallest minimum vertex degree over all minimal k-Ramsey 3-uniform hypergraphs for $K_t^{(3)}$ is exponential in some polynomial in k and t. We also study the smallest possible minimum codegrees over minimal 2-Ramsey 3-uniform hypergraphs.

Keywords: minimal Ramsey hypergraph, minimum degree and codegree
1 Introduction and New Results

A graph G is said to be Ramsey for a graph F if no matter how one colors the edges of G with two colors, say red and blue, there is a monochromatic copy of F. A classical result of Ramsey [11] states that for every F there is an integer n such that K_n is Ramsey for F. If G is Ramsey for F but every proper subgraph of G is not Ramsey for F, then we say that G is minimal Ramsey for F. We denote by $\mathcal{M}_k(F)$ the set of minimal graphs G with the property that no matter how one colors the edges of G with k colors, there is a monochromatic copy of F in it, and refer to these as minimal k-Ramsey graphs for F. There are many challenging open questions concerning the study of various parameters of minimal k-Ramsey graphs for various F. The most studied ones are the classical (vertex) Ramsey numbers $r_k(F) := \min_{G \in \mathcal{M}_k(F)} v(G)$ and the size Ramsey number $\hat{r}_k(F) := \min_{G \in \mathcal{M}_k(F)} e(G)$, where $v(G)$ is the number of vertices in G and $e(G)$ is its number of edges. To determine the classical Ramsey number $r_2(K_t)$ is a notoriously difficult problem and essentially the best known bounds are $2^{(1+o(1))t/2}$ and $2^{(2+o(1))t}$ due to Spencer [13] and Conlon [4].

Burr, Erdős and Lovász [1] were the first to study other possible parameters of the class $\mathcal{M}_2(K_t)$. In particular they determined the minimum degree $s_2(K_t) := \min_{G \in \mathcal{M}_2(K_t)} \delta(G) = (t-1)^2$ which looks surprising given the exponential bound on the minimum degree of K_n with $n = r_2(K_t)$ (it is not difficult to see that $K_n \in \mathcal{M}_2(K_t)$). Extending their results, Fox, Grinshpun, Liebenau, Person and Szabó [7] studied the minimum degree $s_k(K_t) := \min_{G \in \mathcal{M}_k(K_t)} \delta(G)$ for more colors showing a general bound on $s_k(K_t) \leq 8(t-1)^6k^3$ and proving quasiquadratic bounds in k on $s_k(K_t)$ for fixed t. Further results concerning minimal Ramsey graphs were studied in [2,8,9,12,14].

Here we initiate the study of minimal Ramsey 3-uniform hypergraphs and provide first bounds on various notions of minimum degrees for minimal Ramsey hypergraphs. Generally, an r-uniform hypergraph H is a tuple (V, E) with vertex set V and $E \subseteq \binom{V}{r}$ being its edge set. Ramsey’s theorem holds for r-uniform hypergraphs as well, as shown originally by Ramsey himself [11], and we write $G \rightarrow (F)_k$ if G is k-Ramsey for F, i.e. if no matter how one colors the edges of the r-uniform hypergraph G, there is a monochromatic copy of F. We denote by $K_t^{(r)}$ the complete r-uniform hypergraph with t vertices, i.e.

1 Email: dennis.clemens@tuhh.de
2 Email: person@math.uni-frankfurt.de
3 YP is partially supported by DFG grant PE 2299/1-1.
$K_t^{(r)} = ([t], [[t]]_r)$, and by the hypergraph Ramsey number $r_k(F)$ the smallest n such that $K_n^{(r)} \rightarrow (F)_k$. While in the graph case the known bounds on $r_2(K_t)$ are only polynomially far apart, already in the case of 3-uniform hypergraphs the bounds on $r_2(K_t^{(3)})$ differ in one exponent: $2^{c_1 t^2} \leq r_2(K_t^{(3)}) \leq 2^{2^{c_2 t}}$ for some absolute positive constants c_1 and c_2, and a similar situation occurs for higher uniformities. For further information on Ramsey numbers we refer the reader to the standard book on Ramsey theory [10] and for newer results to the survey of Conlon, Fox and Sudakov [5].

Given $\ell \in [r-1]$, we define the degree $\deg(S)$ of an ℓ-set S in an r-uniform hypergraph $H = (V, E)$ as the number of edges that contain S and we define the minimum ℓ-degree $\delta_\ell(H) := \min_{S \in (V)_\ell} \deg(S)$. For two vertices u and v we simply write $\deg(u,v)$ for the codegree $\deg(\{u,v\})$. Similar to the graph case we extend verbatim the notion of minimal Ramsey graphs to minimal Ramsey r-uniform hypergraphs in a natural way. That is, $\mathcal{M}_k(F)$ is the set of all minimal k-Ramsey r-uniform hypergraphs H, i.e. consisting of those with $H \rightarrow (F)_k$ but $H' \not\rightarrow (F)_k$ for all $H' \subsetneq H$. We define

$$s_{k,\ell}(K_t^{(r)}) := \min_{H \in \mathcal{M}_k(K_t^{(r)})} \delta_\ell(H),$$

which extends the introduced graph parameter $s_k(K_t)$. It will be shown actually that $s_{2,2}(K_t^{(3)})$ is zero and thus it makes sense to ask for the second smallest value of the codegrees. This motivates the following parameter $s'_{k,\ell}(K_t^{(r)})$:

$$s'_{k,\ell}(K_t^{(r)}) := \min_{H \in \mathcal{M}_k(K_t^{(r)})} \left(\min \left\{ \deg_H(S) : S \in \left(V(H) \atop \ell \right), \deg_H(S) > 0 \right\} \right).$$

We prove the following results on the minimum degree and codegree of minimal Ramsey 3-uniform hypergraphs for cliques $K_t^{(3)}$.

Theorem 1.1 The following holds for all $t \geq 4$ and $k \geq 2$

$$\hat{r}_k(K_{t-1}) \leq s_{k,1}(K_t^{(3)}) \leq k^{20k t^4}. \tag{2}$$

The lower bound $\hat{r}_k(K_{t-1})$ is the size-Ramsey number for K_{t-1} and it was shown by Erdős, Faudree, Rousseau and Schelp [6] that $\hat{r}_k(K_t) = \left(\frac{r_k(K_t)}{2} \right)$. Using the lower bound on $r_k(K_t) \geq 2^{\frac{1-o(1)}{4} k^2 t}$ (see e.g. [5]) we obtain $s_{k,1}(K_t^{(3)}) \geq 2^{\frac{1}{2} k t (1-o(1))}$.

Theorem 1.2 Let \(t \geq 4 \) be an integer. Then,

\[s_{2,2}(K_t^{(3)}) = 0 \text{ and } s'_{2,2}(K_t^{(3)}) = (t - 2)^2. \]

Notice that with \(s'_{2,2} \) we ask for the smallest positive codegree, while for \(s_{2,2} \) we also allow the codegree to be zero. This in particular means that in any minimal 2-Ramsey hypergraph \(H \) for \(K_t^{(3)} \) we have that a pair of vertices \(u \) and \(v \) are either not contained in a common edge or have codegree at least \((t - 2)^2\). This might look surprising at the first sight since taking \(K_n^{(3)} \) with \(n = r_2(K_t^{(3)}) \) and then deleting all edges that contain two distinguished vertices gives a non-Ramsey hypergraph.

2 Main tools

2.1 BEL-gadgets

We refer in the following to a coloring without a monochromatic copy of \(F \) as an \(F \)-free coloring. Our first tool is a result that asserts existence of non-\(k \)-Ramsey hypergraphs \(\mathcal{H} \) for \(K_t^{(3)} \) that impose certain structure on all \(K_t^{(3)} \)-free colorings of \(E(\mathcal{H}) \).

Theorem 2.1 Let \(k \geq 2 \) and \(t \geq 4 \) be integers. Let \(H \) be a 3-uniform hypergraph with \(H \not\rightarrow (K_t^{(3)})_k \) and let \(c : E(H) \to [k] \) be a \(k \)-coloring which avoids monochromatic copies of \(K_t^{(3)} \). Then, there exists a 3-uniform hypergraph \(\mathcal{H} \) with the following properties:

(i) \(\mathcal{H} \not\rightarrow (K_t^{(3)})_k \),

(ii) \(\mathcal{H} \) contains \(H \) as an induced subhypergraph, i.e. \(\mathcal{H}[V(H)] = H \),

(iii) for every coloring \(\varphi : E(\mathcal{H}) \to [k] \) without a monochromatic copy of \(K_t^{(3)} \), the coloring of \(H \) under \(\varphi \) agrees with the coloring \(c \), up to a permutation of the \(k \) colors,

(iv) if there are two vertices \(a, b \in V(H) \) with \(\deg_H(a, b) = 0 \) then \(\deg_\mathcal{H}(a, b) = 0 \) as well,

(v) if \(|V(H)| \geq 4 \) then for every vertex \(x \in V(\mathcal{H}) \setminus V(H) \) there exists a vertex \(y \in V(H) \) such that \(\deg_\mathcal{H}(x, y) = 0 \).

This theorem is crucial for our constructions of minimal \(k \)-Ramsey hypergraphs and thus for giving upper bounds on \(s_{k,1}(K_t^{(3)}) \), \(s_{k,2}(K_t^{(3)}) \) and \(s'_{k,2}(K_t^{(3)}) \), respectively. For its proof we first show the existence of a 3-uniform
hypergraph \(\mathcal{H} \) and two edges \(f, e \in E(\mathcal{H}) \) with \(|f \cap e| = 2 \) and \(e(\mathcal{H}[e \cup f]) = 2 \) so that \(\mathcal{H} \) is not \(k \)-Ramsey for \(K_t^{(3)} \) with the property that any \(F \)-free \(k \)-coloring of \(E(\mathcal{H}) \) colors the edges \(e \) and \(f \) differently. Putting several copies of these hypergraphs together in an appropriate way we receive a hypergraph promised by Theorem 2.1 (and we refer to such \(\mathcal{H} \) as BEL-gadgets). In the graph case similar gadgets (called positive/negative signal senders) were given first by Burr, Erdős and Lovász [1] in the case of two colors, and later generalized by Burr, Nešetřil and Rödl [2] and by Rödl and Siggers [12].

2.2 Random hypergraphs

The random hypergraph \(H^{(3)}(n, p) \) is the probability space of all labeled 3-uniform hypergraphs on the vertex set \([n]\) with each edge appearing with probability \(p \) independently of all other edges. The following lemma is crucial for the upper bound (2) in Theorem 1.1.

Lemma 2.2 Let \(t \geq 4 \) and \(k \geq 2 \) be integers. There is a 3-uniform hypergraph \(H \) on \(n = k^{10t+4} \) vertices, which can be written as an edge-disjoint union of \(k \) 3-uniform hypergraphs \(H_1, \ldots, H_k \) with the following properties:

(i) for every \(i \in [k] \), \(H_i \) contains no copies of \(K_t^{(3)} \), and

(ii) for any coloring \(c \) of the edges of the complete graph \(K_n \) with \(k \) colors there exists a color \(x \in [k] \) and \(k \) sets \(S_1, \ldots, S_k \) that induce copies of \(K_{t-1} \) in color \(x \) under the coloring \(c \) such that \(H_1[S_1] \cong \ldots \cong H_k[S_k] \cong K_{t-1}^{(3)} \).

The rough idea of the proof of Lemma 2.2 is to take \(k \) random hypergraphs \(H'_1, \ldots, H'_k \sim H^{(3)}(n, p) \), with \(p \) being chosen appropriately. And then to show that, with positive probability, even after deleting those edges which appear in at least two hypergraphs \(H'_i \) or in a copy of \(K_t^{(3)} \) inside some \(H'_i \), we are left with \(k \) edge-disjoint hypergraphs \(H_1, \ldots, H_k \) that satisfy the conditions above.

For the details we refer the reader to the full version of our paper [3].

3 Proof of Theorem 1.1

Lower bound

Take a minimal \(k \)-Ramsey hypergraph \(\mathcal{H} \) for \(K_t^{(3)} \) together with a vertex \(v \in V(\mathcal{H}) \) such that \(\text{deg}(v) = \delta(\mathcal{H}) = s_{k,1}(K_t^{(3)}) \). We know that there exists a \(K_t^{(3)} \)-free \(k \)-coloring of \(\mathcal{H} \setminus \{v\} \) which cannot be extended to a \(K_t^{(3)} \)-free \(k \)-coloring of \(\mathcal{H} \). But this implies that \(\text{link}_{\mathcal{H}}(v) \rightarrow (K_{t-1})_k \) holds, where
link$_H(v)$ is the link of v, i.e., the graph consisting of all edges e such that $e \cup \{v\} \in E(H)$. Therefore: $s_{k,1}(K_t^{(3)}) = \deg(v) \geq \hat{r}_k(K_{t-1})$.

Upper bound

The proof of our upper bound on $s_{k,1}(K_t^{(3)})$ makes use of the BEL-gadgets. We fix a 3-uniform hypergraph H as asserted by Lemma 2.2 and a $K_t^{(3)}$-free k-coloring c of $E(H)$ which colors each of the subhypergraphs H_i monochromatically with color $i \in [k]$. Applying Theorem 2.1 for this choice of H and c, we obtain a new hypergraph H', that contains H as an induced subhypergraph, and we extend it further to a hypergraph \mathcal{H} by adding one new vertex v with the edges $\{v, a, b\}$ for all $\{a, b\} \in \binom{V(H)}{2}$, i.e. the link of v is link$_H(v) := \binom{V(H)}{2}$. So, $\deg_H(v) = \binom{n}{2} < k^{20kt^4}$ holds. Owing to the assertions on \mathcal{H} we have $\mathcal{H}' \not\rightarrow (K_t^{(3)})_k$. On the other hand one can show $\mathcal{H} \rightarrow (K_t^{(3)})_k$, which follows from Property (ii) of Lemma 2.2. Thus, we conclude that there needs to exist a minimal k-Ramsey hypergraph \mathcal{H}'' of $K_t^{(3)}$ with $\mathcal{H}' \subseteq \mathcal{H}'' \subseteq \mathcal{H}$ and $0 < \deg_{\mathcal{H}''}(v) < k^{20kt^4}$. \hfill \Box

4 Proof of Theorem 1.2

The size of $s_{2,2}'$

For the proof of $s_{2,2}'(K_t^{(3)}) \geq (t - 2)^2$ we take a minimal 2-Ramsey hypergraph H for $K_t^{(3)}$ together with two vertices u and $v \in V(H)$ such that $\deg_H(u, v) > 0$. We aim to show that $\deg_H(u, v) \geq (t - 2)^2$, and thus, for contradiction, we assume the opposite. We then delete all edges containing both u and v in order to obtain a hypergraph H', which satisfies $H' \not\rightarrow (K_t^{(3)})_2$. That is, we find a red-blue coloring c of $E(H')$ which does not create a monochromatic copy of $K_t^{(3)}$. Now, let $N(u, v) := \{w \in V(H) : \{u, v, w\} \in E(H)\}$, $\deg_H(u, v) = |N(u, v)|$, and fix a longest sequence B_1, \ldots, B_k of vertex disjoint sets of size $t - 2$ in $N(u, v)$, such that both $B_i \cup \{u\}$ and $B_i \cup \{v\}$ span only blue edges under the coloring c in H'. By assumption on the codegree $\deg_H(u, v)$, we know that $k < t - 2$. We then extend the coloring c to a coloring of $E(H)$ as follows. For each edge $e = \{u, v, w\} \in E(H)$ with $w \in \bigcup B_i$, we set $c(e) = \text{red}$, while for all other edges $e = \{u, v, w\} \in E(H)$ we set $c(e) = \text{blue}$. It then follows that under this coloring there is no monochromatic copy of $K_t^{(3)}$ in H, contradicting $H \rightarrow (K_t^{(3)})_2$.

For the proof of $s_{2,2}'(K_t^{(3)}) \leq (t - 2)^2$ we first provide a hypergraph H as follows. We choose $V(H) := [(t - 2)^2] \cup \{a, b\}$ together with a partition
of $[(t-2)^2]$ into $(t-2)$ equal-sized sets V_1, \ldots, V_{t-2}. Moreover, we define $E(H)$ by taking all edges of the clique $K_t^{(3)}$ on the vertex set $\bigcup V_i \cup \{a, b\}$ and then deleting all edges that contain both a and b plus deleting all edges that cross exactly two different V_is and contain neither a nor b. For this particular hypergraph, we then define a red-blue-coloring c as follows: the edges contained in $V_i \cup \{a\}$ and in $V_i \cup \{b\}$ for $i \in [t-2]$ are colored blue, while the other edges of H are colored red. By construction of H this coloring does not produce a monochromatic copy of $K_t^{(3)}$.

Now, applying Theorem 2.1 to H and c, we obtain a 3-uniform hypergraph H which contains H as an induced subhypergraph such that $H \not\rightarrow K_t^{(3)}$, $\deg_H(a, b) = 0$ and such that any $K_t^{(3)}$-free red-blue coloring ϕ of $E(H)$ agrees on $E(H)$ with the coloring c up to permutation of the two colors. Extending this construction by adding to H all $(t-2)^2$ edges $\{a, b, u\}$ where $u \in [(t-2)^2]$, we finally end up in a hypergraph H' for which it is not difficult to see that $H' \rightarrow (K_t^{(3)})_2$. Thus, as $H \not\rightarrow (K_t^{(3)})_2$, there needs to exist a minimal 2-Ramsey hypergraph H'' of $K_t^{(3)}$ with $H \subseteq H'' \subseteq H'$ and such that $0 < \deg_{H''}(a, b) \leq (t-2)^2$, i.e., $s_{2,2}(K_t^{(3)}) \leq (t-2)^2$.

Showing $s_{2,2}(K_t^{(3)}) = 0$.

Let us consider the previous construction of H' again. As $s'_{2,2}(K_t^{(3)}) = (t-2)^2$ was proven, we know that any minimal 2-Ramsey subhypergraph of H' for $K_t^{(3)}$ has to contain all $(t-2)^2$ edges that contain a and b, and in particular, any such minimal hypergraph H'' needs to contain all vertices of the induced subhypergraph H. However, $H''[V(H)] \not\rightarrow (K_t^{(3)})_2$ holds, as can be seen by considering a red-blue-edge-coloring chosen uniformly at random and showing that the expected number of monochromatic copies of $K_t^{(3)}$ in $H''[V(H)]$ is less than 1.

Thus, any minimal 2-Ramsey subhypergraph H'' of H' has to contain at least one further vertex $x \notin V(H)$. Then, since $|V(H)| = (t-2)^2 + 2 \geq 6$, it follows by Property (v) of Theorem 2.1 that there exists a vertex $y \in V(H)$ such that $0 = \deg_{H'}(x, y) \geq \deg_{H''}(x, y)$, i.e., $s_{2,2}(K_t^{(3)}) = 0$. \qed

For the details we refer the reader to the full version of our paper [3].

References

